Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Joint R&D initiative to reduce the CO2 footprint of the transportation sector

Eni and BASF have signed a strategic agreement on a joint R&D initiative to reduce the CO2 footprint of the transportation sector.

The cooperation aims to develop a new technology to produce advanced bio-propanol from glycerin, a side stream of the production of industrial biodiesel (FAME, fatty acid methil esters), that Eni will purchase from European producers. The technology under development involves the conversion of glycerin to propanol via an innovative, catalytic hydrotreatment process.


The new approach consists of a process of applying a high-pressure hydrogenation reaction over a BASF catalyst, ensuring that the bio-propanol is produced with a high yield and purity while minimizing by-products. The bio-propanol offers the potential to reduce greenhouse gas emissions by 65 to 75% compared to fossil fuels.


Propanol obtained via this innovative method can be easily added as a drop-in bio-fuel component to gasoline. Thanks to its better physicochemical properties compared to bioethanol and its very high-octane number, bio-propanol is a valuable component for the preparation of premium gasoline.


Information Source: Read More…..

#FOLLOW US ON INSTAGRAM